WoonYoung Jeong1, YeongKuk Kim2, Yoonsik Kim1, Yoonji Chung1, Dong Jae Lee1, Ji Min Kang1, Dooho Lee1, Yang Mo Koo3, Seung Hwan Lee1,*
1Division of Animal & Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
2Quantomic research & solution, Daejeon, 34134, South Korea
3Korea Animal Improvement Association, 88 Myeongdal-ro, Seoul, South Korea
Correspondence to Seung Hwan Lee, E-mail: slee46@cnu.ac.kr
Volume 7, Number 4, Pages 167-178, December 2023.
Journal of Animal Breeding and Genomics 2023, 7(4), 167-178. https://doi.org/10.12972/jabng.20230018
Received on 14 November, 2023, Revised on 26 December, 2023, Accepted on 26 December, 2023, Published on 31 December, 2023.
Copyright © 2023 Korean Society of Animal Breeding and Genetics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0).
This research used the simulation program to identify individuals resistant to foot-and-mouth disease (FMD) using the QMSim program. The simulation program was utilized to generate genetic and phenotypic data for individuals with and without FMD immunity. Subsequently, based on the simulated data, a genome-wide association study (GWAS) was performed to detect quantitative trait loci (QTL) associated with FMD immunity. Additionally, the QTLs identified by GWAS were compared with Random Forest (RF) and XGBoost. Out of the 41,461 SNPs, which included QTLs generated from the simulation, a total of 20 markers were found to be associated with FMD immunity. When comparing the performance of GWAS, RF, and XGBoost, RF identified the highest number of QTLs (7), followed by GWAS (6) and XGBoost (3). Furthermore, GBLUP, RF, and XGBoost were employed to classify individuals as either having or lacking FMD immunity. The classification accuracy, sensitivity, and specificity were evaluated using a confusion matrix, and the results were compared. The overall accuracy of the classification was as follows: XGBoost 0.53, RF 0.52, GBLUP 0.51. Sensitivity values were RF 0.98, XGBoost 0.97, GBLUP 0.19, and specificity values were GBLUP 0.83, XGboost 0.08, RF 0.05. XGBoost consistently outperformed the other methods in the overall accuracy and sensitivity, while GBLUP exhibited the lowest performance. Therefore, the research suggests that combining various methods in an ensemble approach, rather than relying solely on GBLUP, can lead to better predictions of FMD-resistant individuals. This approach has the potential to help mitigate the damages caused by future FMD outbreaks.
FMD resistance, GBLUP, RandomForest, XGBoost
This research was financially supported by the Ministry of Small and Medium-sized Enterprises(SMEs) and Startups(MSS), Korea, under the “Regional Specialized Industry Development Program+(R&D, S3370836)” supervised by the Korea Technology and Information Promotion Agency for SMEs(TIPA).
This work was partly supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321082-3).
Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265.
[DOI][PubMed]
Blazer, D. G., & Hernandez, L. M. (2006). Genes, behavior, and the social environment: Moving beyond the nature/nurture debate.
Chung, S. J. (2012). 전장 유전체 연관 연구. Program at a Glance, 30(1), 30.
Egger-Danner, C., Willam, A., Fuerst, C., Schwarzenbacher, H., & Fuerst-Waltl, B. (2012). Hot topic: Effect of breeding strategies using genomic information on fitness and health. Journal of dairy science, 95(8), 4600-4609.
[DOI][PubMed]
Gao, H., Christensen, O. F., Madsen, P., Nielsen, U. S., Zhang, Y., Lund, M. S., & Su, G. (2012). Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genetics Selection Evolution, 44(1), 8. doi:10.1186/1297-9686-44-8
[DOI][PubMed][PMC]
Gowane, G., Sharma, A., Sankar, M., Thirumurugan, P., Narayanan, K., Subramaniam, S., & Pattnaik, B. (2013). Evaluation of genetic and environmental parameters determining antibody response induced by vaccination against Foot and Mouth Disease. Agricultural Research, 2, 140-147.
[DOI]
Grubman, M. J., & Baxt, B. (2004). Foot-and-mouth disease. Clinical microbiology reviews, 17(2), 465-493.
[DOI][PubMed][PMC]
Han, M. (2021). 가축 살처분의 보상 등 공법적 쟁점에 대한 소고. In 토지공법연구 (Vol. 94, pp. 237-258).
Hyomin Park, & Jin, B. (2017). 가축살처분 작업 트라우마와 작업자의 정신건강. In 한국사회학회 사회학대회 논문집 (pp. 877-878).
Jang, M., Lim, D., Park, W., & Park, J.-E. (2022). 한우 도체형질의 합성곱신경망을 이용한 유전체 예측 정확도 추정. In 한국산학기술학회 논문지 (Vol. 23, pp. 516-523).
[DOI]
Joung Min Choi, Jihyun Kim, Hyunkyung Choo, Chaelin Park, & Chae, H. (2022). 머신러닝 기반의 농업 유전자원 데이터 분석 플랫폼. In 정보과학회 컴퓨팅의 실제 논문지 (Vol. 28, pp. 57-62).
[DOI]
Kim, D. (2011). 우리에게 구제역은 무엇인가?: 국가 주도의 살처분 정책과 그 함의. In 민주사회와 정책연구 (pp. 13-40): 한신대학교 민주사회정책연구원.
Kim, J., Lee, K. B., & Hong, S. G. (2017). ECG-based biometric authentication using random forest. In (Vol. Journal of the Institute of Electronics and Information Engineers, Vol. 54, No. 6, pp. pp. 100-105).
Kramer, M., Erbe, M., Seefried, F. R., Gredler, B., Bapst, B., Bieber, A., & Simianer, H. (2014). Accuracy of direct genomic values for functional traits in Brown Swiss cattle. Journal of dairy science, 97(3), 1774-1781.
[DOI][PubMed]
Leach, R. J., Craigmile, S. C., Knott, S. A., Williams, J. L., & Glass, E. J. (2010). Quantitative trait loci for variation in immune response to a Footand-Mouth Disease virus peptide. BMC genetics, 11(1), 107. doi:10.1186/1471-2156-11-107
[DOI][PubMed][PMC]
Lee, B. Y., Lee, K. N., Lee, T., Park, J. H., Kim, S. M., Lee, H. S., Chung, D. S., Shim, H. S., Lee, H. K., & Kim, H. (2015). Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field. In Asian-Australas J Anim Sci (Vol. 28, pp. 166-170).
[DOI][PubMed][PMC]
Lee, G. H., Lee, Y. S., Moon, S. J., & Kong, H. S. (2022). The Accuracy of Genomic Estimated Breeding Value Using a Hanwoo SNP Chip and the Pedigree Data of Hanwoo Cows in Gyeonggi Province. Journal of Life Science, 32(4), 279-284.
Lee, S., Cho, Y., Lim, D., Kim, H., Choi, B., Park, H., Kim, O., Kim, S., Kim, T., & Yoon, D. (2011). Linkage disequilibrium and effective population size in Hanwoo Korean cattle. Asian-Australasian Journal of Animal Sciences, 24(12), 1660-1665.
[DOI]
Liang, B., Ding, H., Huang, L., Luo, H., & Zhu, X. (2020). GWAS in cancer: progress and challenges. Molecular Genetics and Genomics, 295(3), 537-561. doi:10.1007/s00438-020-01647-z
[DOI][PubMed]
Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. genetics, 157(4), 1819-1829.
[DOI][PubMed][PMC]
Naderi, S., Yin, T., & König, S. (2016). Random forest estimation of genomic breeding values for disease susceptibility over different disease incidences and genomic architectures in simulated cow calibration groups. Journal of dairy science, 99(9), 7261-7273.
[DOI][PubMed]
Naderi, S., Yin, T., & König, S. (2016). Random forest estimation of genomic breeding values for disease susceptibility over different disease incidences and genomic architectures in simulated cow calibration groups. In Journal of dairy science (Vol. 99, pp. 7261-7273).
[DOI][PubMed]
Naderi, Y., & Sadeghi, S. (2019). Assessment of the genomic prediction accuracy of discrete traits with imputation of missing genotypes. Animal Science Papers and Reports, 37(2), 149-168.
Pak, S. I., & Bae, S. H. (2012). A Space-Time Cluster of Foot-and-Mouth Disease Outbreaks in South Korea, 2010~ 2011. In Journal of the Korean association of regional geographers (Vol. 18, pp. 464-472).
Palaiokostas, C. (2021). Predicting for disease resistance in aquaculture species using machine learning models. In Aquaculture Reports (Vol. 20, pp. 100660).
[DOI]
Porto-Neto, L. R., Kijas, J. W., & Reverter, A. (2014). The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes. Genetics Selection Evolution, 46(1), 22. doi:10.1186/1297-9686-46-22
[DOI][PubMed][PMC]
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., De Bakker, P. I., & Daly, M. J. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American journal of human genetics, 81(3), 559-575.
[DOI][PubMed][PMC]
Rachwicha, C., Aryuman, S., Phatsara, C., & Chongkasikit, N. (2022). Impact of Historical Population Structure Different on Inbreeding Rate of Dairy Cattle Population. In The 1st International Conference on” Innovation for Resilient Agriculture (pp. 9).
Sargolzaei, M., & Schenkel, F. S. (2009). QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25(5), 680-681. doi:10.1093/bioinformatics/btp045
[DOI][PubMed]
Schaeffer, L. (2014). Strategies for Using Genomics to Improve Swine Resistance to PRRS.
In. Seo, H. D., & Kim, E. M. (2019). 랜덤포레스트와 서포트벡터머신 기법을 적용한 포인트 클라우드와 실감정사영상을 이용한 객체분류. In 한국측량학회지 (Vol. 37, pp. 405-416).
Suh, C.-H., Kim, J., D, H., Kim, K., Chung, C., jeong, M.-k., & Im, J. (2000). 구제역의 파급 영향과 정책 과제. In.
Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., & Meyre, D. (2019). Benefits and limitations of genome-wide association studies. Nature Reviews Genetics, 20(8), 467-484. doi:10.1038/s41576-019-0127-1
[DOI][PubMed]
Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association studies. Nature Reviews Methods Primers, 1(1), 59.
[DOI]
VanRaden, P., Van Tassell, C., Wiggans, G., Sonstegard, T., Schnabel, R., Taylor, J., & Schenkel, F. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. Journal of dairy science, 92(1), 16-24.
[DOI][PubMed]
Xiang, T., Li, T., Li, J., Li, X., & Wang, J. (2023). Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs. In The FASEB Journal (Vol. 37, pp. e22961).
[DOI][PubMed]
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. The American journal of human genetics, 88(1), 76-82.
[DOI][PubMed][PMC]
Yeo-Joo Lee, Jia-Qi Chu, Seo-Yong Lee, Su-Mi Kim, Kwang-Nyeong Lee, Young-Joon Ko, Hyang-Sim Lee, In-Soo Cho, Seok-Hyun Nam, & Jong-Hyeon Park. (2011). 구제역 Asia1 백신주의 전체 염기서열분석 및 특성. In 한국가축위생학회지 (KOJVS) (Vol. 34, pp. 95-102): 한국동물위생학회.
[DOI]
Yoo, J. E. (2015). 랜덤 포레스트. In 교육평가연구 (Vol. 28, pp. 427-448): 한국교육평가학회.
Young-Jin Han, & Joe, I.-W. (2021). XGBoost 기반의 조기 중지를 활용한 광고 클릭 예측 방안. In 한국통신학회논문지 (Vol. 46, pp. 9931000).
Yu, H.-S. (2014). 주요 가축질병 발생현황과 예방대책-구제역의 백신접종 청정국 지위 획득 이후 방역대책. 사료, 23-25.
Yun, W., seo, d., Min, S., & Nam, H. (2021). RandomForest 와 XGBoost 를 활용한 유방암 종양 분류. In 한국통신학회 학술대회논문집 (pp. 113-114).