Taebin Kim1, Minsu Go1,2, Dayeon Kang1,2, and Jaemin Kim1,2,3*
1Department of Animal Science and Biotechnology, Gyeongsang National University
2Division of Applied Life Science (BK21 Four), Gyeongsang National University
3Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Korea
Correspondence to Jaemin Kim, E-mail: jmkim85@gnu.ac.kr
Volume 7, Number 1, Pages 9-15, March 2023.
Journal of Animal Breeding and Genomics 2023, 7(1), 9-15. https://doi.org/10.12972/jabng.20230002
Received on 12 December, 2022, Revised on 22 March, 2023, Accepted on 28 March, 2023, Published on 31 March, 2023.
Copyright © 2023 Korean Society of Animal Breeding and Genetics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0).
The process of commensal domestication of cats from their ancestor wildcats (Felis silvestris) is not well understood. To identify the genetic underpinnings of cat domestication, we analyzed 46 whole genome sequences (WGS) comprising 3 wildcat species and 16 cat breeds, documenting over 34 million single nucleotide polymorphisms (SNPs). We first showed clear evidence of genomic divergence of domestic cats and wildcats. A genomic comparison between domestic cats and wildcats revealed evidence of genetic selection of underlying neurological functions, nutrient metabolism, and coat patterns, mirroring their historical roles of domestic cats and morphological and behavioral differentiation from wild progenitors.
domestication, domestic cats, wildcats, positive selection, genome
The authors declare that they have no conflicting interests.
Agbor, L. N., E. F. Wiest, M. Rothe, W.-H. Schunck and M. K. Walker (2014). “Role of CYP1A1 in modulating the vascular and blood pressure benefits of omega-3 polyunsaturated fatty acids.” Journal of Pharmacology and Experimental Therapeutics 351(3): 688-698.
[DOI][PubMed][PMC]
Alexander, D. H., J. Novembre and K. Lange (2009). “Fast model-based estimation of ancestry in unrelated individuals.” Genome research 19(9): 1655-1664.
[DOI][PubMed][PMC]
Association, A. P. P. M. (2007). APPMA National Pet Owners Survey, American Pet Products Manufacturers Association.
Auwera, G. A., M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel, A. Levy‐Moonshine, T. Jordan, K. Shakir, D. Roazen and J. Thibault (2013). “From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline.” Curr Protoc Bioinformatics: 11.10. 1111.10. 33.
Axelsson, E., A. Ratnakumar, M.-L. Arendt, K. Maqbool, M. T. Webster, M. Perloski, O. Liberg, J. M. Arnemo, Å. Hedhammar and K. LindbladToh (2013). “The genomic signature of dog domestication reveals adaptation to a starch-rich diet.” Nature 495(7441): 360-364.
[DOI][PubMed]
Berteselli, G. V., B. Regaiolli, S. Normando, B. De Mori, C. A. Zaborra and C. Spiezio (2017). “European wildcat and domestic cat: Do they really differ?” Journal of Veterinary Behavior 22: 35-40.
[DOI]
Bradshaw, J. W., D. Goodwin, V. Legrand-Defretin and H. M. Nott (1996). “Food selection by the domestic cat, an obligate carnivore.” Comparative Biochemistry and Physiology Part A: Physiology 114(3): 205-209.
[DOI][PubMed]
Cameron-Beaumont, C., S. E. Lowe and J. W. Bradshaw (2002). “Evidence suggesting preadaptation to domestication throughout the small Felidae.” Biological Journal of the Linnean Society 75(3): 361-366.
[DOI]
Chang, C. C., C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell and J. J. Lee (2015). “Second-generation PLINK: rising to the challenge of larger and richer datasets.” Gigascience 4(1): s13742-13015-10047-13748.
[DOI][PubMed][PMC]
Clutton-Brock, J. (1990). “Α Natural History of Domesticated Mammals.” Praehistorische Zeitschrift 65(1): 73-76.
[DOI]
Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth and S. T. Sherry (2011). “The variant call format and VCFtools.” Bioinformatics 27(15): 2156-2158.
[DOI][PubMed][PMC]
Darwin, C. (1868). The variation of animals and plants under domestication, J. murray.
Driscoll, C. A., D. W. Macdonald and S. J. O’Brien (2009). “From wild animals to domestic pets, an evolutionary view of domestication.” Proceedings of the National Academy of Sciences 106(supplement_1): 9971-9978.
[DOI][PubMed][PMC]
Driscoll, C. A., M. Menotti-Raymond, A. L. Roca, K. Hupe, W. E. Johnson, E. Geffen, E. H. Harley, M. Delibes, D. Pontier and A. C. Kitchener (2007). “The Near Eastern origin of cat domestication.” Science 317(5837): 519-523.
[DOI][PubMed][PMC]
Felsenstein, J. (1993). PHYLIP (phylogeny inference package), version 3.5 c, Joseph Felsenstein.
Hu, Y., S. Hu, W. Wang, X. Wu, F. B. Marshall, X. Chen, L. Hou and C. Wang (2014). “Earliest evidence for commensal processes of cat domestication.” Proceedings of the National Academy of Sciences 111(1): 116-120.
[DOI][PubMed][PMC]
Kaelin, C. B., X. Xu, L. Z. Hong, V. A. David, K. A. McGowan, A. Schmidt-Küntzel, M. E. Roelke, J. Pino, J. Pontius and G. M. Cooper (2012). “Specifying and sustaining pigmentation patterns in domestic and wild cats.” Science 337(6101): 1536-1541.
[DOI][PubMed][PMC]
Kilonzo, K., D. Strahnen, V. Prex, J. Gems, B. van der Veen, S. K. Kapanaiah, B. K. Murthy, S. Schulz, R. Sprengel and D. Bannerman (2022). “Distinct contributions of GluA1-containing AMPA receptors of different hippocampal subfields to salience processing, memory and impulse control.” Translational psychiatry 12(1): 1-13.
[DOI][PubMed][PMC]
Li, H. and R. Durbin (2009). “Fast and accurate short read alignment with Burrows-Wheeler transform.” Bioinformatics 25(14): 1754-1760.
[DOI][PubMed][PMC]
Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis and R. Durbin (2009). “The sequence alignment/map format and SAMtools.” Bioinformatics 25(16): 2078-2079.
[DOI][PubMed][PMC]
McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel and M. Daly (2010). “The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.” Genome Res 20(9): 1297-1303.
[DOI][PubMed][PMC]
Montague, M. J., G. Li, B. Gandolfi, R. Khan, B. L. Aken, S. M. Searle, P. Minx, L. W. Hillier, D. C. Koboldt and B. W. Davis (2014). “Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication.” Proceedings of the National Academy of Sciences 111(48): 17230-17235.
[DOI][PubMed][PMC]
Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick and D. Reich (2006). “Principal components analysis corrects for stratification in genome-wide association studies.” Nature genetics 38(8): 904-909.
[DOI][PubMed]
Srour, M., J.-B. Rivière, J. M. Pham, M.-P. Dubé, S. Girard, S. Morin, P. A. Dion, G. Asselin, D. Rochefort and P. Hince (2010). “Mutations in DCC cause congenital mirror movements.” Science 328(5978): 592-592.
[DOI][PubMed]
Williams, R. W., C. Cavada and F. Reinoso-Suárez (1993). “Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat.” Journal of Neuroscience 13(1): 208-228.
[DOI][PubMed][PMC]
Yang, J., S. H. Lee, M. E. Goddard and P. M. Visscher (2011). “GCTA: a tool for genome-wide complex trait analysis.” The American Journal of Human Genetics 88(1): 76-82.
[DOI][PubMed][PMC]