Journal of Animal Breeding and Genomics (J Anim Breed Genom)
Indexed in KCI
OPEN ACCESS, PEER REVIEWED
pISSN 1226-5543
eISSN 2586-4297
Research Article

Analysis of Linkage Disequilibrium and Estimation of Effective Population Size in Hanwoo Cow Population

Department of Animal Science & Biotechnology, Graduate School, Kyungpook National University, Sangju, 37224, Republic of Korea

Correspondence to Duhak Yoon, E-mail: dhyoon@knu.ac.kr

Volume 6, Number 4, Pages 253-264, December 2022.
Journal of Animal Breeding and Genomics 2022, 6(4), 253-264. https://doi.org/10.12972/jabng.20220027
Received on August 04, 2022, Revised on December 23, 2022, Accepted on December 26, 2021, Published on December 31, 2022.
Copyright © 2022 Korean Society of Animal Breeding and Genetics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0).

ABSTRACT

This study analyzed linkage disequilibrium (LD) and effective population size (Ne) to understand structural characteristics such as genetic diversity and historical events of the Hanwoo cow population using Illumina SNP50K BeadChip. The genomic DNA was prepared through the hair roots of 2,076 Hanwoo cows in Gyeongbuk province and 941 Hanwoo cows in Jeonbuk province, and a total of 53,866 and 50,908 SNP were obtained, respectively. For analysis, 2,058 samples and 41,449 SNP were selected in Gyeongbuk, and 941 samples and 35,863 SNP were selected in Jeonbuk through a QC. LD (r2) by the distance between pairwise SNP was calculated, and the average r2 was 0.05 ± 0.10 in Gyeongbuk, and 0.04 ± 0.07 in Jeonbuk. r2 was shown to be 0.23 ± 0.29 at 0-50 kb and 0.12 ± 0.19 at 50-100 kb in Gyeongbuk, and 0.21 ± 0.26 at 0-50 kb and 0.11 ± 0.18 at 50-100 kb in Jeonbuk. The past effective population size was 994 heads in 69 generation ago but decreased to 267 heads in 13 generation ago in Gyeongbuk, 1,588 heads in 70 generation ago but decreased to 415 heads in 13 generation ago in Jeonbuk. As a result, it was confirmed that LD decayed by the physical distance between SNP, and the genetic diversity of Hanwoo cows gradually declined. It might be in urgent need of a conservation plan that includes a cow-customized genetic management program.

KEYWORDS

Single Nucleotide Polymorphism (SNP), Linkage Disequilibrium, Effective population size, Genetic diversity, Hanwoo cow

ACKNOWLEDGEMENTS

본 연구는 농촌진흥청 바이오그린연계 농생명혁신기술개발사업(과제번호: PJ 015658022022)의 지원에 의해 이루어진 것입니다. 연구비 지원에 감사드립니다.

REFERENCES

Alvarenga AB, Rovadoscki GA, Petrini J, Coutinho LL, Morota G, Spangler ML, Pinto LFB, Carvalho GGP and Mourão GB. 2018. Linkage disequilibrium in Brazilian Santa Inês breed, Ovis aries. Sci. Rep. 8(1): 1-11.
[DOI][PubMed][PMC]

Barbato M, Orozco-terWengel P, Tapio M, and Bruford MW. 2015. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front. Genet. 6: 109.
[DOI]

Bohmanova J, Sargolzaei M and Schenkel FS. 2010. Characteristics of linkage disequilibrium in North American Holsteins. BMC Genomics. 11: 421.
[DOI][PubMed][PMC]

Cañas-Álvarez JJ, Mouresan EF, Varona L, Díaz C, Molina A, Baro JA, Altarriba J, Carabaño J, Casellas J and Piedrafita J. 2016. Linkage disequilibrium, persistence of phase, and effective population size in Spanish local beef cattle breeds assessed through a high-density single nucleotide polymorphism chip. J. Anim. Sci. 94(7): 2779-2788.
[DOI][PubMed]

Cho CI, Lee JH and Lee DH. 2012. Estimation of linkage disequilibrium and effective population size using whole genome single nucleotide polymorphisms in Hanwoo. J. Life. Sci. 22(3): 366-372.
[DOI]

Choi T, Lim D, Park B, Sharma A, Kim JJ, Kim S and Lee SH. 2017. Accuracy of genomic breeding value prediction for intramuscular fat using different genomic relationship matrices in Hanwoo (Korean cattle). Asian-Australas. J. Anim. Sci. 30(7): 907-911.
[DOI][PubMed][PMC]

Chung KY, Lee SH, Cho SH, Kwon EG and Lee JH. 2018. Current situation and future prospects for beef production in South Korea – A review. Asian-Australas. J. Anim. Sci. 31(7): 951-960.
[DOI][PubMed][PMC]

Corbin LJ, Liu AYH, Bishop SC and Woolliams JA. 2012. Estimation of historical effective population size using linkage disequilibria with marker data. J. Anim. Breed. Genet. 129(4): 257-270.
[DOI][PubMed]

Edea Z, Jeoung YH, Shin SS, Ku J, Seo S, Kim IH, Kim SW and Kim KS. 2018. Genome-wide association study of carcass weight in commercial Hanwoo cattle. Asian-Australas. J. Anim. Sci. 31(3): 327-334.
[DOI][PubMed][PMC]

Espigolan R, Baldi F, Boligon AA, Souza FR, Gordo DG, Tonussi RL, Cardoso DF, Oliveira HN, Tonhati H, Sargolzaei M, Schenkel FS, Carvalheiro R, Ferro JA and Albuquerque LG. 2013. Study of whole genome linkage disequilibrium in Nellore cattle. BMC Genomics. 14: 305.
[DOI][PubMed][PMC]

Fabbri MC, Dadousis C, and Bozzi R. 2020. Estimation of linkage disequilibrium and effective population size in three Italian autochthonous beef breeds. Animals 10(6): 1034.
[DOI][PubMed][PMC]

FAO. 2000. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Management of Small Populations at Risk. FAO, Rome, Italy.

Flury C, Tapio M, Sonstegard T, Drögemüller C, Leeb T, Simianer H, Hanotte O and Rieder S. 2010. Effective population size of an indigenous Swiss cattle breed estimated from linkage disequilibrium. J. Anim. Breed. Genet. 127(5): 339-347.
[DOI][PubMed]

Goddard, M. 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica. 136, 245-257. Hedrick PW. 1987. Gametic disequilibrium measures: proceed with caution. Genetics. 117(2): 331-341.
[DOI][PubMed]

Hill WG and Robertson A. 1968. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38(6): 226-231.
[DOI][PubMed]

Hong MW, Choi S, Kim H, Yang SY, Kwak K, Kim J and Lee SJ. 2017. Linkage disequilibrium and association analysis of Hanwoo steer in Gangwon region using bovine SNP50K beadchip. Ann. Anim. Resour. Sci. 28(2): 46-55.
[DOI]

Jasielczuk I, Gurgul A, Szmatoła T, Semik-Gurgul E, Pawlina-Tyszko K, Stefaniuk-Szmukier M, Polak G, Tomczyk-Wrona I and BugnoPoniewierska M. 2020. Linkage disequilibrium, haplotype blocks and historical effective population size in Arabian horses and selected Polish native horse breeds. Livest. Sci. 239: 104095
[DOI]

Jasielczuk I., Gurgul A., Szmatoła T., Ząbek T., Pawlina K., Semik E., and Bugno-Poniewierska M. 2016. Linkage disequilibrium and haplotype block structure in Limousin, Simmental and native Polish Red cattle. Livest. Sci. 191: 57-63
[DOI]

Jemaa SB, Thamri N, Mnara S, Rebours E, Rocha D and Boussaha M. 2019. Linkage disequilibrium and past effective population size in native Tunisian cattle. Genet. Mol. Biol. 42(1): 52-61.
[DOI][PubMed][PMC]

Kim ES and Kirkpatrick BW. 2009. Linkage disequilibrium in the North American Holstein population. Anim. Genet. 40(3): 279-288.
[DOI][PubMed]

Kim EH, Kang HC, Sun DW, Myung CH, Kim JY, Lee DH, Lee SH and Lim HT. 2021. Estimation of breeding value and accuracy using pedigree and genotype of Hanwoo cows (Korean cattle). J. Anim. Breed. Genet. 139(3): 281-291.
[DOI][PubMed]

Kruglyak L. 1999. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22(2): 139-144.
[DOI][PubMed]

Lee SH, Cho YM, Lim D, Kim HC, Choi BH, Park HS, Kim OH, Kim S, Kim TH, Yoon D and Hong SK. 2011. Linkage Disequilibrium and Effective Population Size in Hanwoo Korean Cattle. Asian-Australas. J. Anim. Sci. 24(12): 1660-1665.
[DOI]

Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, Choy YH, Kim HC, Jeon KJ, Kim SD, Yeon SH, Park SB and Kang HS. 2014. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J. Anim. Sci. Technol. 56(1): 1-8.
[DOI][PubMed][PMC]

Lee GH and Kong HS. 2021. Linkage disequilibrium analysis of Hanwoo in Gyeonggi region using Hanwoo SNP chip. Journal of Animal Breeding and Genomics. 5(4): 235-242.
[DOI]

Li Y and Kim JJ. 2015. Effective population size and signatures of selection using bovine 50K SNP chips in Korean native cattle (Hanwoo). Evol. Bioinform. 11: 143-153.
[DOI][PubMed][PMC]

Lu D, Sargolzaei M, Kelly M, Li C, Vander Voort G, Wang Z, Plastow G, Moore S and Miller SP. 2012. Linkage disequilibrium in Angus, Charolais, and Crossbred beef cattle. Front. Genet. 3: 152.
[DOI]

McRae AF, McEwan JC, Dodds KG, Wilson T, Crawford AM and Slate J. 2002. Linkage disequilibrium in domestic sheep. Genetics. 160(3): 1113-1122.
[DOI][PubMed][PMC]

McVean, G. 2008. John Wiley and Sons, Ltd. Linkage disequilibrium, recombination and selection. 2: 909-944.
[DOI]

Meuwissen TH, Hayes BJ and Goddard M. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157(4): 1819-1829.
[DOI][PubMed][PMC]

Meuwissen TH. 2003. Genomic selection: the future of marker assisted selection and animal breeding. FAO. 54-59.

Mokhber M, Shahrbabak MM, Sadeghi M, Shahrbabak HM, Stella A, Nicolzzi E and Williams JL. 2019. Study of whole genome linkage disequilibrium patterns of Iranian water buffalo breeds using the Axiom Buffalo Genotyping 90K Array. PLoS One. 14(5): e0217687.
[DOI][PubMed][PMC]

Muñoz M, Bozzi R, García-Casco J, Núñez Y, Ribani A, Franci O, García F, Škrlep M, Schiavo G, Bovo S, Utzeri VJ, Charneca R, Martins JM, Quintanilla R, Tibau J, Margeta V, Djurkin- Kušec I, Mercat MJ, Riquet J, Estellé J, Zimmer C, Razmaite V, Araujo JP, Radović Č, Savić R, Karolyi D, Gallo M, Čandek-Potokar M, Fernández AI, Fontanesi L and Óvilo C. 2019. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Sci. Rep. 9(1): 1-14.
[DOI][PubMed][PMC]

NCBI. 2014. Bos_taurus_UMD_3.1.1. https://www.ncbi.nlm.nih.gov/assembly/GCF_000003055.6/#/ st (2014.11.25).

NCBI. 2018. ARS-UCD1.3. https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.2#/st (2018.04.11).

Odani M, Narita A, Watanabe T, Yokouchi K, Sugimoto Y, Fujita T, Oguni T, Matsumoto M, and Sasaki Y. 2006. Genome‐wide linkage disequilibrium in two Japanese beef cattle breeds. Anim. Genet. 37(2): 139-144.
[DOI][PubMed]

Park B, Choi T, Kim S and Oh SH. 2013. National genetic evaluation (system) of Hanwoo (Korean native cattle). Asian-Australas. J. Anim. Sci. 26(2): 151-156.
[DOI][PubMed][PMC]

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, De Bakker PIW, Daly MJ and Sham PC. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3): 559-575.
[DOI][PubMed][PMC]

Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR and Simianer H. 2010. The pattern of linkage disequilibrium in German Holstein cattle. Anim. Genet. 41(4): 346-356.
[DOI][PubMed]

Salem MMI, Thompson G, Chen S, Beja-Pereira A and Carvalheira J. 2018. Linkage Disequilibrium and Haplotype Block Structure in Portuguese Holstein Cattle. Czech J. Anim. Sci., 63(2): 61-69
[DOI]

Saravanan KA, Panigrahi M, Kumar H, Parida S, Bhushan B, Gaur GK, Kumar P, Dutt T, Mishra BP and Singh RK. 2022. Genome-wide assessment of genetic diversity, linkage disequilibrium and haplotype block structure in Tharparkar cattle breed of India. Anim. Biotechnol. 33(2): 297-311.
[DOI][PubMed]

Scheet P and Stephens M. 2006. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78(4): 629-644.
[DOI][PubMed][PMC]

Shin DH, Kim DH and Oh JD. 2018a. Analysis of Genetic Diversity and Structural Changes in Hanwoo Proven Bulls Population. Ann. Anim. Resour. Sci. 29(4): 142-149.
[DOI]

Shin EG, Lee SH and Yoon D. 2018b. Accuracy of genomic estimated breeding value with Hanwoo cows in the commercial farms. J. Agric. Life Sci. 52(2): 91-98.
[DOI]

Singh A, Kumar A, Mehrotra A, Pandey AK, Mishra BP and Dutt T. 2021. Estimation of linkage disequilibrium levels and allele frequency distribution in crossbred Vrindavani cattle using 50K SNP data. PLoS One. 16(11): e0259572.
[DOI][PubMed][PMC]

Sudrajad P, Seo DW, Choi TJ, Park BH, Roh SH, Jung WY, Lee SS, Lee JH, Kim S and Lee SH. 2017. Genome‐wide linkage disequilibrium and past effective population size in three Korean cattle breeds. Anim. Genet. 48(1): 85-89.
[DOI][PubMed]

Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME and Visscher PM. 2007. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 17(4): 520-526
[DOI][PubMed][PMC]

VanRaden PM. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91(11): 4414-4423.
[DOI][PubMed]

Wang J. 2005. Estimation of effective population sizes from data on genetic markers. Phil. Trans. R. Soc. B. 360(1459): 1395-1409.
[DOI][PubMed][PMC]

Waples RS and Do C. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3(3): 244-262.
[DOI][PubMed][PMC]

Won S, Park JE, Son JH, Lee SH, Park BH, Park M, Park WC, Chai HH, Kim H, Lee J and Lim D. 2020. Genomic Prediction Accuracy Using Haplotypes Defined by Size and Hierarchical Clustering Based on Linkage Disequilibrium. Front. Genet. 11: 134.
[DOI][PubMed][PMC]

Xu L, Zhu B, Wang Z, Xu L, Liu Y, Chen Y, Zhang L, Gao X, Gao H, Zhang S, Xu L and Li J. 2019. Evaluation of linkage disequilibrium, effective population size and haplotype block structure in Chinese cattle. Animals. 9(3): 83.
[DOI][PubMed][PMC]

Section