Journal of Animal Breeding and Genomics (J Anim Breed Genom)
Indexed in KCI
OPEN ACCESS, PEER REVIEWED
pISSN 1226-5543
eISSN 2586-4297
Research Article

A comparative study of estimated breeding values with Hanwoo cow using genetic evaluation models

1Department of Animal Science and Biotechnology, Graduate School, Kyungpook National University, Sangju 37224, Korea
2Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, Korea
3Department of Animal Science, Kyungpook National University, Sangju 37224, Korea

Correspondence to Duhak Yoon, E-mail: dhyoon@knu.ac.kr

Volume 6, Number 4, Pages 241-252, December 2022.
Journal of Animal Breeding and Genomics 2022, 6(4), 241-252. https://doi.org/10.12972/jabng.20220026
Received on December 14, 2022, Revised on December 26, 2022, Accepted on December 27, 2021, Published on December 31, 2022.
Copyright © 2022 Korean Society of Animal Breeding and Genetics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0).

ABSTRACT

This study was conducted to compare the accuracies of estimated breeding value (EBV), genomic estimated breeding value (GEBV) and single-step genomic estimated breeding value (ssGEBV) for economic traits of 935 Hanwoo cows. The economic traits considered in this study were carcass weight (CW), eye muscle area (EMA), backfat thickness (BFT) and marbling score (MS). The EBV analysis was performed using the best linear unbiased prediction (BLUP) method by constructing a numerator relationship matrix (NRM) with the pedigree information of 935 cows and 9,849 Hanwoo steers with phenotype data. The GEBV analysis was performed using genomic best linear unbiased prediction (GBLUP) method by constructing a genomic relationship matrix (GRM) with SNP 50K information of 935 cows, and phenotypic and genomic data of Hanwoo steer used in BLUP analysis as reference population. The ssGEBV analysis was performed with single-step genomic BLUP (ssGBLUP) based on the relationship matrix H, which is constructed from the numerator relationship matrix (A) augmented by the genomic relationship matrix (G). As the results, the differences in accuracies of GEBV and EBV for CW, EMA, BFT and MS traits for 935 cows showed that the accuracies of GEBV were increased by 47.17%, 42.56%, 44.13% and 51.17%, respectively. The accuracies of ssGEBV compared to EBV for CW, EMA, BFT and MS were increased by 47.64%, 43.02%, 44.60% and 51.41%, respectively. When ssGEBV was compared with GEBV for CW, EMA, BFT and MS, there were increased by 0.32%, 0.33%, 0.33% and 0.16%, respectively. As conclusion, this study suggests that GBLUP and ssGBLUP methods for Hanwoo cows are able to improve the accuracy of the estimated breeding value using genomic information. It could to help the management of cows and the establishment of a breeding system in the Hanwoo farms.

KEYWORDS

Hanwoo, EBV, GEBV, ssGEBV, Accuracy

ACKNOWLEDGEMENTS

본 논문은 농촌진흥청 바이오그린연계 농생명 혁신기술개발사업 (과제번호: PJ 015658)의 지원에 의해 이루어진 것입니다. 혈액 시료를 제공하여 주신 단풍미인한우협동조합 관계자분들께 깊은 감사를 드리며, 혈통 및 표현형 자료를 제공해 주신 축산물품질평가원 및 한국종축개량협회에 많은 감사를 드립니다.

REFERENCES

Aguilar I., Misztal I., Johnson D.L., Legarra A., Tsuruta S., and Lawlor T.J. 2010. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 93(2): 743-752.
[DOI][PubMed]

Aguilar I., Misztal I., Tsuruta S., Legarra A., and Wang H. 2014. PREGSF90-POSTGSF90: computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. In: 10 World Congress on Genetics Applied to Livestock Production (WCGALP).

Christensen O.F., and Lund, M.S. 2010. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol. 42(1):2.
[DOI][PubMed][PMC]

Collins F.S., Morgan, M., and Patrinos, A. 2003. The Human Genome Project: lessons from large-scale biology. Science. 300(5617): 286-290.
[DOI][PubMed]

Dekkers J.C.M. 2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. J. Anim. Sci. 2004. 82(E. Suppl.): E313-E328.

Eck S.H., Benet-Pages A., Flisikowski K., Meitinger T., Fries R., and Strom T.M. 2009. Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biology 10: R82. doi:10.1186/gb-2009-10-8-r82
[DOI][PubMed][PMC]

Fernando R.L., Dekkers J.C., and Garrick D.J. 2014. A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses. Genet. Sel. Evol. 46(1): 50.
[DOI][PubMed][PMC]

Garrick D.J. 2007. Equivalent mixed model equations for genomic selection. J. Anim. Sci. 85: 376-376.
[DOI]

Green E.D., Guyer, M.S., and N.H.G.R. Institute. 2011. Charting a course for genomic medicine from base pairs to bedside. Nature. 470(7333): 204.
[DOI][PubMed]

Hayes B.J., Bowman, P J., Chamberlain, A.C., Verbyla, K., and Goddard, M E. 2009. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet. Sel. Evol. 41: 51.
[DOI][PubMed][PMC]

Hayes B., and Goddard, M.E. 2001. The distribution of the effects of genes affecting quantitative traits in livestock. Genet. Sel. Evol. 33: 209229
[DOI][PubMed][PMC]

Hayes B.J., and Goddard, M.E. 2008. Prediction of breeding values using marker-derived relationship matrices. J. Anim. Sci. 86(9): 2089-2092.
[DOI][PubMed]

Hayes B.J., Lewin H.A., and Goddard M.E. 2013. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29(4): 206-214.
[DOI][PubMed]

Henderson C.R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 31: 423-447.
[DOI][PubMed]

Henderson C. R., and Quaas, R. L. 1976. Multiple trait evaluation using relatives’ records. J. Anim. Sci. 43(6):1188-1197.
[DOI]

Kim E.H., Kang H.C., Sun D.W. Myung C.H., Kim J.Y., Lee D.H., Lee S.H., and Lim H.T. 2022. Estimation of breeding value and accuracy using pedigree and genotype of Hanwoo cows (Korean cattle). J. Anim. Breed Genet. 139: 281-291.
[DOI][PubMed]

Lande R., and Thompson R. 1990. Efficiency of Marker-Assisted Selection in the Improvement of Quantitative Traits. Genetics. 124: 743-756.
[DOI][PubMed][PMC]

Lee J., Chenng H., Garrick D., Golden B., Dekkers J., Park K., Lee D., and Fernando R. 2017. Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle. Genet. Sel. Evol. 49:2
[DOI][PubMed][PMC]

Legarra A., Aguilar I., and Misztal I. 2009. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92(9): 46564663.
[DOI][PubMed]

Lopez B.I., Lee S.H., Shin D.H., Oh J.D., Cha H.H., Park W., Park J.E., and Lim D. 2020. Accuracy of genomic evaluation using imputed high-density genotypes for carcass traits in commercial Hanwoo population. Livest. Sci., 241: 104256. [ [DOI]

Mehrban H., Lee, D.H., Moradi, M.H., Cho, C., Naserkheil, M., and Ibáñez-Escriche, N. 2017. Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture. Genet. Sel. Evol. 49(1):1.
[DOI][PubMed][PMC]

Meuwissen T.H., Hayes, B.J., and Goddard, M.E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157(4):1819-1829.
[DOI][PubMed][PMC]

Misztal I., Legarra, A., and Aguilar, I. 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92(9): 4648-4655.
[DOI][PubMed]

Misztal I., Lourenco D., and Legarra, A. 2020. Current status of genomic evaluation. J. Anim. Sci. 98(4): 1-14.
[DOI][PubMed][PMC]

Pongpanich M., Sullivan, P.F., and Tzeng, J.Y. 2010. A quality control algorithm for filtering SNPs in genome-wide association studies. Bioinformatics. 26(14): 1731-1737.
[DOI][PubMed][PMC]

Schulman N.F., Vries M.J., and Dentine M.R. 1999. Linkage disequilibrium in two-stage marker-assisted selection. J. Anim. Breed. Genet. 116: 99-110.
[DOI]

VanRaden P.M. 2007. Genomic measures of relationship and inbreeding. INTERBULL bulletin.

VanRaden P.M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91(11): 4414-4423.
[DOI][PubMed]

VanRaden P.M., Van Tassell, C.P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F., and Schenkel, F. S. 2009. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92(1): 16-24.
[DOI][PubMed]

Visscher P.M., Medland, S.E., Ferreira, M.A., Morley, K.I., Zhu, G., Cornes, B.K., Montgomery, G.W., and Martin, N.G. 2006. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS genetics. 2(3): e41.
[DOI][PubMed][PMC]

구양모, 김시동, 김정일, 송치은, 이기환, 정용호, 이재윤, 장현기, 박병호, 최태정, 조광현, 이승수, 이정규, 김효선. 2011. 한우 도체형질의 유전능력평가를 위한 통계모형 탐색. 한국동물자원과학회지 53(4): 283~288.
[DOI]

김성진, 최태정, 손지현, 이득민, 이중재, 이정규, 임현태, 구양모. 2022. ssGBLUP을 이용한 한우 도체형질에 대한 유전체육종가 및 신뢰도 추정. 한국동물유전육종학회지 6(3): 57-72.

노승회, 김병우, 김효선, 민희식, 윤호백, 이득환, 전진태, 이정규. 2004. 한우의 도체형질 유전모수 추정을 위한 REML과 Bayesian via Gibbs Sampling 방법의 비교 연구. 한국동물자원과학회지. 46(5): 719-728.
[DOI]

당창권, 김형철, 장선식, 이정묵, 홍영훈, 전기준, 연성흠, 강희설, 양보석, 홍보구, 이준헌, 이승환. 2013. 평창지역 거세출하우 자료를 이용한 유전모수 추정. 충남대학교 농업과학연구. 40(4): 339-345.
[DOI]

신철교. 2008. 육종가 기반의 한우 송아지 선발 방법에 관한 연구. 경상대학교 박사학위 논문.

원정일, 김종복, 이정구. 2010. 육질개량을 위한 한우번식우의 유전능력평가. 한국축산학회지. 52(4): 259-264.
[DOI]

이승환, 김형철, 임다정, 당창권, 조용민, 김시동, 이학교, 이준헌, 양보석, 오성종, 홍성구, 장원경. 2012. 한우에 있어서 유전체 육종가 추정. 충남대학교 농업과학연구. 39(3):3 57-364.

조충일. 2013. 유전체 선발 기술을 활용한 한우 도체형질의 육종가 정확도 및 유전적 개량량 추정에 관한 연구. 한경대학교 박사학위 논문.

한정민, 이윤석, 공홍식. 2018. 한우의 경제형질과 관련된 유전능력 평가요인에 대한 효과. 한국데이터정보과학회지. 29(5): 1279-1286.
[DOI]

황정미, 김시동, 최연호, 윤호백, 박철진. 2008. 한우 거세우의 도체형질에 대한 유전모수 추정. 한국동물자원과학회지. 50(5): 613-620.
[DOI]

Section