Yejee Park, Min-Jae Jang, and Jun-Mo Kim*
Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Korea
Correspondence to Jun-Mo Kim, E-mail: junmokim@cau.ac.kr
Volume 6, Number 4, Pages 195-200, December 2022.
Journal of Animal Breeding and Genomics 2022, 6(4), 195-200. https://doi.org/10.12972/jabng.20220021
Received on December 12, 2022, Revised on December 23, 2022, Accepted on December 23, 2021, Published on December 31, 2022.
Copyright © 2022 Korean Society of Animal Breeding and Genetics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0).
Understanding the biological phenomena encoded through the genome is important. Therefore, it is possible to identify the genes of each organism and infer the characteristics and similarities of each other through the genomic analysis. RNA-seq is a representative method among methods for comparing gene expression levels through transcriptome analysis. It is accompanied by next generation sequencing (NGS) and enables highly quantitative and wide-range precise measurement. A representative research method that includes whole genome contents is to construct a biological map. Using the atlas, it is possible to conduct research that includes all comprehensive genetic information to identify specific locations where genes are expressed through gene location mapping. In addition, by identifying the correlation between the gene and the biomarker in the network, select a significant biomarker and functional analysis could be performed. Endocrine disruptors cause diseases by disrupting endocrine function in the body. Bisphenol A, a representative endocrine disruptor, is most permeated in daily life, threatening human health, obesity and spermatogenesis. This review focuses on transcriptome profiling and genomic atlas construction that can provide comprehensive biological insights in animal genetics studies and information of endocrine disrupting chemicals.
Atlas, Bisphenol A, Endocrine disrupting chemicals, Network analysis, Transcriptome profiling
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025159).
Abdi, H., & Williams, L. J. J. W. i. r. c. s. (2010). Principal component analysis. 2(4), 433-459.
[DOI]
Altshuler, D., Daly, M. J., & Lander, E. S. J. s. (2008). Genetic mapping in human disease. 322(5903), 881-888.
[DOI][PubMed] [PMC]
Anowar, F., Sadaoui, S., & Selim, B. J. C. S. R. (2021). Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne). 40, 100378.
[DOI]
Carwile, J. L., & Michels, K. B. J. E. r. (2011). Urinary bisphenol A and obesity: NHANES 2003-2006. 111(6), 825-830.
[DOI][PubMed] [PMC]
Costa-Silva, J., Domingues, D., & Lopes, F. M. J. P. o. (2017). RNA-Seq differential expression analysis: An extended review and a software tool. 12(12), e0190152.
[DOI][PubMed] [PMC]
Diamanti-Kandarakis, E., Bourguignon, J.-P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., . . . Gore, A. C. J. E. r. (2009). Endocrinedisrupting chemicals: an Endocrine Society scientific statement. 30(4), 293-342.
[DOI][PubMed] [PMC]
Ekins, R., & Chu, F. W. J. T. i. b. (1999). Microarrays: their origins and applications. 17(6), 217-218.
[DOI][PubMed]
Fang, L., Cai, W., Liu, S., Canela-Xandri, O., Gao, Y., Jiang, J., . . . Rosen, B. D. J. G. r. (2020). Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle. 30(5), 790-801.
[DOI][PubMed] [PMC]
Hout, M. C., Papesh, M. H., & Goldinger, S. D. J. W. I. R. C. S. (2013). Multidimensional scaling. 4(1), 93-103.
[DOI][PubMed] [PMC]
Kabir, E. R., Rahman, M. S., Rahman, I. J. E. t., & pharmacology. (2015). A review on endocrine disruptors and their possible impacts on human health. 40(1), 241-258.
[DOI][PubMed]
Lang, I. A., Galloway, T. S., Scarlett, A., Henley, W. E., Depledge, M., Wallace, R. B., & Melzer, D. J. J. (2008). Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. 300(11), 1303-1310.
[DOI][PubMed]
Langfelder, P., & Horvath, S. J. B. b. (2008). WGCNA: an R package for weighted correlation network analysis. 9(1), 1-13.
[DOI][PubMed] [PMC]
Langston, N. J. E. H. (2008). The retreat from precaution: Regulating diethylstilbestrol (DES), endocrine disruptors, and environmental health. 13(1), 41-65.
[DOI]
Mahfouz, A., Huisman, S. M., Lelieveldt, B. P., Reinders, M. J. J. B. S., & Function. (2017). Brain transcriptome atlases: a computational perspective. 222(4), 1557-1580.
[DOI][PubMed] [PMC]
Melzer, D., Osborne, N. J., Henley, W. E., Cipelli, R., Young, A., Money, C., . . . Wareham, N. J. J. C. (2012). Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. 125(12), 1482-1490.
[DOI][PubMed]
Murtagh, F., Contreras, P. J. W. I. R. D. M., & Discovery, K. (2012). Algorithms for hierarchical clustering: an overview. 2(1), 86-97.
[DOI]
Netter, F. H. (2014). Atlas of human anatomy, Professional Edition E-Book: including NetterReference. com Access with full downloadable image Bank: Elsevier health sciences.
Pontén, F., Jirström, K., Uhlen, M. J. T. J. o. P. A. J. o. t. P. S. o. G. B., & Ireland. (2008). The Human Protein Atlas-a tool for pathology. 216(4), 387-393.
[DOI][PubMed]
Radwan, M., Wielgomas, B., Dziewirska, E., Radwan, P., Kałużny, P., Klimowska, A., . . . Jurewicz, J. J. A. j. o. m. s. h. (2018). Urinary bisphenol A levels and male fertility. 12(6), 2144-2151.
[DOI][PubMed] [PMC]
Rani, B., & Sharma, V. J. A. R. (2017). Transcriptome profiling: methods and applications-A review. 38(4), 271-281.
[DOI]
Reinartz, J., Bruyns, E., Lin, J.-Z., Burcham, T., Brenner, S., Bowen, B., . . . Woychik, R. J. B. i. F. G. (2002). Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. 1(1), 95-104.
[DOI][PubMed]
Reinli, K., Block, G. J. N., & cancer. (1996). Phytoestrogen content of foods-a compendium of literature values. 26(2), 123-148.
[DOI][PubMed]
Rochester, J. R. J. R. t. (2013). Bisphenol A and human health: a review of the literature. 42, 132-155.
[DOI][PubMed]
Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T. L., Thompson, C. L., . . . Dang, C. J. N. a. r. (2012). Allen Brain Atlas: an integrated spatiotemporal portal for exploring the central nervous system. 41(D1), D996-D1008.
[DOI][PubMed] [PMC]
Van der Maaten, L., & Hinton, G. J. J. o. m. l. r. (2008). Visualizing data using t-SNE. 9(11).
Van Vliet, A. H. J. F. m. l. (2010). Next generation sequencing of microbial transcriptomes: challenges and opportunities. 302(1), 1-7.
[DOI][PubMed]
Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. J. S. (1995). Serial analysis of gene expression. 270(5235), 484-487.
[DOI][PubMed]
Wang, Z., Gerstein, M., & Snyder, M. J. N. r. g. (2009). RNA-Seq: a revolutionary tool for transcriptomics. 10(1), 57-63.
[DOI][PubMed] [PMC]
Watson-Haigh, N. S., Kadarmideen, H. N., & Reverter, A. J. B. (2010). PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. 26(3), 411-413.
[DOI][PubMed]
Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott, K., . . . Stuart, J. M. J. N. g. (2013). The cancer genome atlas pan-cancer analysis project. 45(10), 1113-1120.
[DOI][PubMed] [PMC]
Werner, T. J. C. o. i. b. (2008). Bioinformatics applications for pathway analysis of microarray data. 19(1), 50-54.
[DOI][PubMed]
Wolf, J. B. J. M. e. r. (2013). Principles of transcriptome analysis and gene expression quantification: an RNA‐seq tutorial. 13(4), 559-572.
[DOI][PubMed]