Ji-Yeong Kim1, Eun-Ho Kim2, Ho-Chan Kang1, Cheol-Hyun Myung2, Kwan-Woo Kim3, Hyun-Tae Lim1,2*
1Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
2Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea
3Animal Genetics Resources Research Center, National Institute of Animal Science, RDA, Hamyang 50000, Korea
Correspondence to Hyun-Tae Lim, E-mail: s_htim@gnu.ac.kr
Volume 6, Number 4, Pages 125-134, December 2022.
Journal of Animal Breeding and Genomics 2022, 6(4), 125-134. https://doi.org/10.12972/jabng.20220014
Received on September 02, 2022, Revised on December 13, 2022, Accepted on December 13, 2021, Published on December 31, 2022.
Copyright © 2022 Korean Society of Animal Breeding and Genetics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0).
Deer is mainly raised for the deer velvet antler used as herbal medicine in Korea, but the self-sufficiency rate of deer velvet antlers in Korea is low and there is no systematic system. Therefore, this study was conducted to establish a microsatellite (MS) marker set for individual identification and paternity test of elk (Cervus canadensis), red deer (Cervus elaphus), and sika deer (Cervus nippon), which are mainly raised in Korea. A total of 9 MS markers were selected and combined into one set based on the size of the marker, the heterozygosity, and the polymorphism information content (PIC). It is thought to be a suitable marker for sufficient use with an observation heterozygosity of 0.525, an expected heterozygosity of 0.643, and a PIC of 0.602. As a result of the probabilities of different individuals with the same genotype being found, the random mating population was 4.68 × 10-8 and the half-sib mating population was 3.23 × 10-6. And the non-exclusion probability was analyzed as 0.0516621 and 0.0045074 when there was no information about parents and only information about one parent. Therefore, if it is used as basic data for establishing a production traceability system or improvement of deer through individual identification and paternity test system, it is expected to revitalize the domestic deer industry.
Deer, Individual identification, Microsatellite, Paternity test
Ayres KL, Overall ADJ. 2004. API-CALC 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Mol Ecol Notes. 4(2):315-318. https://doi.org/10.1111/j.1471-8286.2004.00616.x
[DOI]
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 2004. GENETIX ver. 4.05, logical sous Windows TM pour la genetique des POPulations. Labaratoire Genome, populations, Interactions, CNRS UMR 5000, Universite de Montpeller II. Montpellier. France.
Birren B, Green ED, Klapholz S, Myers RM, Roskams J. 1997. Genome Analysis: A Laboratory Manual: Volume 1 Analyzing DNA. Cold Spring Harbor Laboratory Press. 1-675.
Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 32(3):314-331.
Brasher CW, DePaola A, Jones DD, Bej AK. 1998. Detection of microbial pathogens in shellfish with multiplex PCR. Curr Microbiol. 37(2):101-107. https://doi.org/10.1007/s002849900346
[DOI][PubMed]
Brinkman TJ, Person DK, Schwartz MK. 2010. Individual identification of Sitka black-tailed deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets. Conserv Genet Resour. 2:115-118. https://doi.org/10.1007/s12686-010-9176-7
[DOI]
Dieringer D, Schlötterer C. 2003. Microsatellite ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes. 3(1):167-169. https://doi.org/10.1046/j.1471-8286.2003.00351.x
[DOI]
Edwards MC, Gibbs RA. 1994. Multiplex PCR: advantages, development, and applications. PCR Methods Appl. 3(4):S65-75. https://doi.org/10.1101/gr.3.4.S65
[DOI][PubMed]
Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 5:435-445. https://doi.org/10.1038/nrg1348
[DOI][PubMed]
Felsenstein J. 2004. A package of programs for inferring phylogenies (version 3.63). Available from http://evolution.gs.washington.edu/phylip.html.
Grover A, Sharma PC. 2016. Development and use of molecular markers: past and present. Crit Rev Biotechnol. 36(2):290-302. https://doi.org/10.3109/07388551.2014.959891
[DOI][PubMed]
Huson DH, Bryant D. 2006. Application of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol. 23(2):254-267. https://doi.org/10.1093/molbev/msj030
[DOI][PubMed]
Kim EJ, Jung YJ, Kang SJ, Chang SY, Huh K, Nam DH. 2000. Molecular Discrimination of Cervidae Antlers and Rangifer Antlers. Rep Biochem Mol Biol. 34(2):114-117.
Kim ES, Kim YH, Ko BS, Oh SE, Do EJ, Lee MY. 2012. Multiplex polymerase chain reaction (PCR) and fluorescence-based capillary electrophoresis for identification of deer species from antlers. Afr J Biotechnol. 11(13):3086-3179. https://doi.org/10.5897/AJB11.3375
[DOI]
Kim JU, Baek GG, Lee NH, Choi WS, Choi UK. 2020. Organoleptic Characteristics of Frankfurter Sausage Made with Venison. J Korean Soc Food Sci Nutr. 33(6):639-644. [in Korean]
Kim YH, Kim ES, Ko BS, Oh SE, Ryuk JA, Chae SW, Lee HY, Choi GY, Seo DW, Lee MY. 2012. A PCR-based assay for discriminating Cervus and Rangifer (Cervidae) antlers with mitochondrial DNA polymorphisms. J Anim Sci. 90:2075-2083. [in Korean] https://doi.org/10.2527/jas.2011-4421
[DOI][PubMed]
Kramer MF, Coen DM. 2001. Enzymatic amplification of DNA by PCR: standard procedures and optimization. Curr Protoc Mol Biol. 15:15.1. https://doi.org/10.1002/0471141755.ph0607s13
[DOI][PubMed]
Lee JS, Oh JK. 2008. Discrimination of Deer Antlers using PCR-RFLP of Mitochondrial D-loop Gene. Proc KAIS Fall Conf. 2008.11a:469-472. [in Korean]
Lee NH, Choi UK. 2021. Physicochemical and sensory properties of hamburger steak made with venison. Korean J Food Preserv. 28(7):908-914. [in Korean] https://doi.org/10.11002/kjfp.2021.28.7.908
[DOI]
Lim HT, Min HS, Moon WG, Lee JB, Kim JH, Cho IC, Lee HK, Lee YW, Lee JG, Jeon JT. 2005. Analysis and Selection of Microsatellites Markers for Individual Traceability System in Hanwoo. J Anim Sci Technol. 47(4):491-500. [in Korean] https://doi.org/10.5187/JAST.2005.47.4.491
[DOI]
Lim HT, Seo BY, Jung EJ, Yoo CK, Zhong T, Cho IC, Yoon DH, Lee JG, Jeon JT. 2009. Establishment of a Microsatellite Marker Set for Individual, Pork Brand and Product Origin Identification in Pigs. J Anim Sci Technol. 51(3):201-206. [in Korean] https://doi.org/10.5187/JAST.2009.51.3.201
[DOI]
Marshall TC, Slate J, Kruuk LE, Pemberton JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol. 7(5):639-655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
[DOI][PubMed]
Meredith EP, Rodzen JA, Banks JD, Schaefer R, Ernest HB, Famula TR. 2007. Microsatellite Analysis of Three Subspecies of Elk (Cervus elaphus) in California. J Mammal. 88(3):801-808. https://doi.org/10.1644/06-MAMM-A-014R.1
[DOI]
Miller WL, Edson J, Pietrandrea P. 2019. Identification and evaluation of a core microsatellite panel for use in white-tailed deer (Odocoileus virginianus). BMC Genet. 20:49. https://doi.org/10.1186/s12863-019-0750-z
[DOI][PubMed][PMC]
Peakall R, Smouse PE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 6(1):288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
[DOI]
Polziehn RO, Strobeck C. 2002. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Mol Phylogenet Evol. 22(3):342-356. https://doi.org/10.1006/mpev.2001.1065
[DOI][PubMed]
Randi E, Mucci N, Claro-Hergueta F, Bonnet A, Douzery EJP. 2001. A mitochondrial DNA control region phylogeny of the Cervinae: Speciation in Cervus and implications for conservation. Anim Conserv. 4(1):1-11. https://doi.org/10.1017/S1367943001001019
[DOI]
Raymond M, Rousset F. 1995. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J Hered. 86(3):248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
[DOI]
Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4(4):406-425.
Seo JH, Oh JD, Lee JH, Seo D, Kong HS. 2015. Studies on Genetic Diversity and Phylogenetic Relationships of Korean Native Chicken using the Microsatellite Marker. Korean J Poult Sci. 42(1):15-26. [in Korean] https://doi.org/10.5536/KJPS.2014.42.1.15
[DOI]
Shin KH, Shin SC, Chung KY, Chung ER. 2008. Identification of Deer Antler Species Using Sequence Analysis and PCR-RFLP of Mitochondrial DNA. Food Sci Anim Resour. 28(3):276-282. [in Korean] https://doi.org/10.5851/kosfa.2008.28.3.276
[DOI]
Suh SW, Cho CY, Kim JH, Choi SB, Kim YS, Kim H, Seong HH, Lim HT, Cho JH, Ko YG. 2013. Analysis of Genetic Characteristics and Probability of Individual Discrimination in Korean Indigenous Chicken Brands by Microsatellite Marker. J Anim Sci Technol. 55(3):185-194. [in Korean] https://doi.org/10.5187/JAST.2013.55.3.185
[DOI]
Takezaki N, Nei M. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics. 144(1):389-399. https://doi.org/10.1093/genetics/144.1.389
[DOI][PubMed][PMC]
Vieira ML, Santini L, Diniz AL, Munhoz C. 2016. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 39(3):312-328. https://doi.org/10.1590/1678-4685-GMB-2016-0027
[DOI][PubMed][PMC]
Yoo HS, Lee GN, Lee JS. 2010. Molecular Identification of Deer Antlers using Nucleotide Sequences of Mitochondrial Displacement Loop Region. J Life Sci. 20(12):1859-1566. https://doi.org/10.5352/JLS.2010.20.12.1859
[DOI]
Židek R, Pokorádi J, Bandry Ľ. 2008. Biodiversity in deer population observed by microsatellite markers. J Agrobiol. 25:113-115.
Zsolnai A, Lehoczky I, Gyurmán A, Nagy J, Sugár L, Anton I, Horn P, Magyary I. 2009. Development of eight-plex microsatellite PCR for parentage control in deer. Arch Anim Breed. 52:143-149. https://doi.org/10.5194/aab-52-143-2009
[DOI]