Journal of Animal Breeding and Genomics (J Anim Breed Genom)
Indexed in KCI
OPEN ACCESS, PEER REVIEWED
pISSN 1226-5543
eISSN 2586-4297
Research Article

Analysis of the Genetic Variation of Horse Gap Junction Protein Alpha 4 in Thoroughbreds

1Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Korea
2Department of Animal Biotechnology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Republic of Korea
3Department of Animal Science and Biotechnology, Kyungpook National University, SangJu, Republic of Korea
4Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 627-702, Republic of Korea

Correspondence to Jae-Don Oh, E-mail: oh5ow@naver.com; Byung-Wook Cho, E-mail: bwcho@pusan.ac.kr

Volume 6, Number 3, Pages 99-106, September 2022.
Journal of Animal Breeding and Genomics 2022, 6(3), 99-106. https://doi.org/10.12972/jabng.20220011
Received on July 04, 2022, Revised on September 19, 2022, Accepted on September 19, 2021, Published on September 30, 2022.
Copyright © 2022 Korean Society of Animal Breeding and Genetics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0).

ABSTRACT

The purpose of this study was to analyze the novel single nucleotide polymorphisms (SNPs) of the gap junction protein alpha 4 gene (GJA4) identified in horse muscle RNA-seq and to predict structural changes of proteins by SNPs. In our previous study, we observed differentially expressed genes (DEGs) in Thoroughbreds before and after exercise through RNA-seq analysis. In addition, we conducted an evolutionary analysis using Thoroughbred and Jeju horse re-sequencing data. As a result, we discovered a novel SNP present in GJA4 (LOC22385534 C>G) in the evolutionarily selected gene in the Thoroughbred horse. Transcription factor (TF) binding sites in the 5′-regulatory region of this gene were identified via PROMO. Additionally, bioinformatics tools were used to predict the effect of non-synonymous SNPs (nsSNP) on function and stability. We identified the change of protein structure owing to the amino acid sequence change, which was proline to arginine according to nsSNP data. Our analysis will be useful as a basis for studying genes and SNPs that affect horses.

KEYWORDS

DEG, GJA4, Protein structure, SNP, Thoroughbred

ACKNOWLEDGEMENTS

This work was supported by a 2-Year Research Grant of Pusan National University.

REFERENCES

Akira, S., Uematsu, S. and Takeuchi, O. 2006. Pathogen recognition and innate immunity. Cell. 124(4):783-801. https://doi.org/10.1016/j.cell.2006.02.015
[DOI][PubMed]

Buitrago, M., Lorenz, K., Maass, A.H., Oberdorf-Maass, S., Keller, U., Schmitteckert, E.M., Ivashchenko, Y., Lohse, M.J. and Engelhardt, S. 2005. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nat. Med. 11(8):837. https://doi.org/10.1038/nm1272
[DOI][PubMed]

Cannon, J.G. and St. Pierre. B.A. 1998. Cytokines in exertion-induced skeletal muscle injury. MOL. CELL. BIOCHEM. 179(1-2):159-168. https://doi.org/10.1023/A:1006828425418
[DOI][PubMed]

Chasman, D. and Adams, R.M. 2001. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structurebased assessment of amino acid variation. J. MOL. BIOL. 307(2):683-706. https://doi.org/10.1006/jmbi.2001.4510
[DOI][PubMed]

Gauvreau, G.M., Staempfli, H., McCutcheon, L., Young, S.S. and McDONELL, W.N. 1995. Comparison of aerobic capacity between racing standardbred horses. J. APPL. PHYSIOL. 78(4):1447-1451. https://doi.org/10.1152/jappl.1995.78.4.1447
[DOI][PubMed]

Gu, J., Orr, N., Park, S.D., Katz, L.M., Sulimova, G., MacHugh, D.E. and Hill, E.W. 2009. A genome scan for positive selection in thoroughbred horses. PLoS One. 4(6):e5767. https://doi.org/10.1371/journal.pone.0005767
[DOI][PubMed][PMC]

Harkins, J., Beadle, R. and Kamerling, S. 1993. The correlation of running ability and physiological variables in Thoroughbred racehorses. EQUINE. VET. J. 25(1):53-60. https://doi.org/10.1111/j.2042-3306.1993.tb02902.x
[DOI][PubMed]

Hill, E., Gu, J., McGivney, B. and MacHugh, D. 2010. Targets of selection in the Thoroughbred genome contain exercise‐relevant gene SNPs associated with elite racecourse performance. Anim Genet. 41:56-63. https://doi.org/10.1111/j.1365-2052.2010.02104.x
[DOI][PubMed]

Hill, E.W., Gu, J.J., Eivers, S.S., Fonseca, R.G., McGivney, B.A., Govindarajan, P., Orr, N., Katz, L.M. and MacHugh, D. 2010. A Sequence Polymorphism in MSTN Predicts Sprinting Ability and Racing Stamina in Thoroughbred Horses. Plos One. 5(1):10.1371/annotation/de9e11b9-eb92-4ee5-a56a-908e06d1ed6c. https://doi.org/10.1371/annotation/de9e11b9-eb92-4ee5-a56a-908e06d1ed6c
[DOI]

Jones, J.H., Longworth, K., Lindholm, A., Conley, K., Karas, R., Kayar, S. and Taylor, C. 1989. Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand. J. APPL. PHYSIOL. 67(2):862-870. https://doi.org/10.1152/jappl.1989.67.2.862
[DOI][PubMed]

Khachigian, L.M., Lindner, V., Williams, A.J. and Collins, T. 1996. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science. 271(5254):1427-1431. https://doi.org/10.1126/science.271.5254.1427
[DOI][PubMed]

Kim, H., Lee, T., Park, W., Lee, J.W., Kim, J., Lee, B.Y., Ahn, H., Moon, S., Cho, S. and Do, K.T. 2013. Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA. RES. 20(3):287-298. https://doi.org/10.1093/dnares/dst010
[DOI][PubMed][PMC]

Moynagh, P.N., Williams, D.C. and O’Neill, L.A. 1993. Interleukin-1 activates transcription factor NFκ B in glial cells. BIOCHEM. J. 294(2):343-347. https://doi.org/10.1042/bj2940343
[DOI][PubMed][PMC]

Ng, P.C. and Henikoff, S. 2001. Predicting deleterious amino acid substitutions. GENOME. RES. 11(5):863-874. https://doi.org/10.1101/gr.176601
[DOI][PubMed][PMC]

O’Donovan, K.J., Tourtellotte, W.G., Millbrandt, J. and Baraban, J.M. 1999. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. TRENDS. NEUROSCI. 22(4):167-173. https://doi.org/10.1016/S0166-2236(98)01343-5
[DOI][PubMed]

Oppenheim, J.J. 2001. Cytokines: past, present, and future. INT. J. HEMATOL. 74(1):3-8. https://doi.org/10.1007/BF02982543
[DOI][PubMed]

Park, K.D., Park, J., Ko, J., Kim, B.C., Kim, H.S., Ahn, K., Do, K.T., Choi, H., Kim, H.M. and Song, S. 2012. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC genomics. 13(1):473. https://doi.org/10.1186/1471-2164-13-473
[DOI][PubMed][PMC]

Pereira, S.G. and Oakley, F. 2008. Nuclear factor-κB1: regulation and function. Int. J. Biochem. Cell Biol.. 40(8):1425-1430. https://doi.org/10.1016/j.biocel.2007.05.004
[DOI][PubMed]

Salem, K., Qureshi, M., Sydorenko, V., Parekh, K., Jayaprakash, P., Iqbal, T., Singh, J., Oz, M., Adrian, T. and Howarth, F. 2013. Effects of exercise training on excitation-contraction coupling and related mRNA expression in hearts of Goto-Kakizaki type 2 diabetic rats. MOL. CELL. BIOCHEM. 380(1-2):83-96. https://doi.org/10.1007/s11010-013-1662-2
[DOI][PubMed]

Sunyaev, S., Ramensky, V., Koch, I., Lathe, III.W., Kondrashov, A.S., Bork, P. 2001. Prediction of deleterious human alleles. HUM. MOL. GENET. 10(6):591-597. https://doi.org/10.1093/hmg/10.6.591
[DOI][PubMed]

Tamura, T., Yanai, H., Savitsky, D. and Taniguchi, T. 2008. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26:535-584. https://doi.org/10.1146/annurev.immunol.26.021607.090400
[DOI][PubMed]

Thiel, G., Kaufmann, K., Magin, A., Lietz, M., Bach, K. and Cramer, M. 2000. The human transcriptional repressor protein NAB1: expression and biological activity. BBA-GENE. STRUCT. EXPR. 1493(3):289-301. https://doi.org/10.1016/S0167-4781(00)00207-4
[DOI]

Wade, C.M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., Lear, T.L., Adelson, D.L., Bailey, E., Bellone, R.R., Blöcker, H., Distl, O., Edgar, R.C., Garber, M., Leeb, T., Mauceli, E., MacLeod, J.N., Penedo, M.C.T., Raison, J.M., Sharpe, T., Vogel, J., Andersson, L., Antczak, D.F., Biagi, T., Binns, M.M., Chowdhary, B.P., Coleman, S.J., Della Valle, G., Fryc, S., Guérin, G., Hasegawa, T., Hill, E.W., Jurka, J., Kiialainen, A., Lindgren, G., Liu, J., Magnani, E., Mickelson, J.R., Murray, J., Nergadze, S.G., Onofrio, R., Pedroni, S., Piras, M.F., Raudsepp, T., Rocchi, M., Røed, K.H., Ryder, O.A., Searle, S., Skow, L., Swinburne, J.E., Syvänen, A.C., Tozaki, T., Valberg, S.J., Vaudin, M., White, J.R., Zody, M.C., Broad Institute Genome Sequencing Platform., Broad Institute Whole Genome Assembly Team., Lander, E.S., and Lindblad-Toh, K. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 326(5954):865-867. https://doi.org/10.1126/science.1178158
[DOI][PubMed][PMC]

Wang, Z. and Moult, J. 2001. SNPs, protein structure, and disease. HUM. MUTAT. 17(4):263-270. https://doi.org/10.1002/humu.22
[DOI][PubMed]

White, T.W. and Paul, D.L. 1999. Genetic diseases and gene knockouts reveal diverse connexin functions. ANNU. REV. PHYSIOL. 61(1):283-310. https://doi.org/10.1146/annurev.physiol.61.1.283
[DOI][PubMed]

Willett, P. 1970. The Thoroughbred. Putnam.

Wong, C.W., Christen, T., Roth, I., Chadjichristos, C.E., Derouette, J.P., Foglia, B.F., Chanson, M., Goodenough, D.A. and Kwak, B.R. 2006. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. NAT. MED. 12(8):950. https://doi.org/10.1038/nm1441
[DOI][PubMed]

Yan, S.F., Fujita, T., Lu, J., Okada, K., Zou, Y.S., Mackman, N., Pinsky, D.J. and Stern, D.M. 2000. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. NAT. MED. 6(12):1355. https://doi.org/10.1038/82168
[DOI][PubMed]

Young, L., Marlin, D., Deaton, C., Brown‐Feltner, H., Roberts, C. and Wood, J. 2002. Heart size estimated by echocardiography correlates with maximal oxygen uptake. EQUINE. VET. J. 34(S34):467-471. https://doi.org/10.1111/j.2042-3306.2002.tb05467.x
[DOI][PubMed]

Section