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Abstract
The objective of the study was to identify signatures of divergent selection associated with production and adaptive traits 
in Ethiopian and Hanwoo cattle by using a high-density and informative SNPs (80K) specifically developed from Bos 
indicus breeds. The most highly differentiated regions representing the top 1% windows were used to define genomic 
regions under divergent selection. Based on population genetic differentiation (FST) analysis, a total of 334 genes were 
identified in the comparison of Ethiopian cattle with Korean cattle (Hanwoo). The genes are associated with thermo-
tolerance (DNAJB5/Hsp40), pigmentation (ALX3, DCTN2, and MYO1A), reproduction/fertility (INHBC, UBE2D3, ID3, PAIP2, 
and PSPC1), and body stature and production traits (MBP2, HERC3, and GJB3 and POLR2A) and carcass quality (TFEC, 
MYOT, and PARPA). Functional enrichment analysis further showed that the candidate genes were associated with 
pathways relevant for physiological adaptation, including vasopressin-regulated water reabsorption, Rap1 signaling, 
PIK3 signaling, and melanogenesis to extreme environments. By comparing cattle breeds with distinct evolutionary 
and breeding legacies, we spotted candidate genes under selection and pathways which may contribute to further 
understanding of the consequence of natural and/or artificial selection in molding the phenotypic diversity of modern 
cattle breeds. 
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Introduction

Bos taurus and Bos indicus cattle were domesticated independently in Near East and in Indian sub-
continent from aurochs subspecies, respectively (Loftus et al., 1994). African cattle breeds were originated 
in Asia with a large introgression from wild African auroch (Decker et al., 2014). Since their introduction 
into the content, African cattle have been exposed to a range of new and changing environments and 
human selective breeding (Hanotte et al., 2010). Due to its geographical proximity to the Horn and East 
Coast, Ethiopia is served as a genetic corridor for cattle introduction to the continent and center of 
hybridization (Hanotte et al., 2010). Ethiopia hosts more than 24 diversified cattle populations or strains 
which are largely composed of indicine genetic background (Rege, 1999, Hanotte et al., 2002, Edea et al., 
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2015b). These cattle populations show striking variation in terms of morphology, coat colors, and 
production traits, which may reflect adaptation of the sub-populations to the prevailing diverse local 
environmental conditions. Cattle populations such as Borana, Begait and Ogaden are adapted to low-
altitude areas with high annual temperatures (12 to 37 °C (23 years of data), low rainfall varying from 594 
to 747 mm/years (27 years data), whereas other cattle populations (Arsi, Guraghe, Arado, and Fogera) are 
mainly distributed mid to high-altitude areas characterized by high rainfall (721 to 1360 mm/year) and 
relatively low annual temperature (7 to 27°C).  On the other hand, over the last few years, Hanwoo cattle 
have been selected for beef traits, including carcass weight, eye muscle area, backfat thickness, and 
marbling score (Lee et al., 2014). Specifically, a yearling weight was increased from 315.54 kg to 355.06 kg 
over the last 13 years (Park et al., 2013). Hence, selection for environmental adaptation and commercial 
traits may have differently shaped the genome of these cattle breeds. 

The availability of genome high-density single nucleotide polymorphisms (SNPs) has facilitated the 
mapping of signatures selection associated with domestication and selection. Several investigations have 
been performed to map selection sweeps in cattle (Bahbahani et al., 2017, Bahbahani et al., 2015a, Chan 
et al., 2010, Makina et al., 2015a). Evidence of positive selection for ecological adaptation has also been 
investigated in human (Scheinfeldt et al., 2012), sheep and goats (Lv et al., 2014, Kim et al., 2015) and pig 
(Ai et al., 2013). With the exception of few emerging case studies, the evidence of selection for local 
adaptation is limited in African cattle population in general and in Ethiopian cattle in particular. 
Moreover, selection signatures mapping and diversity studies in African cattle or zebu have been mainly 
performed using Illumina Bovine SNP50K BeadChip (Bahbahani et al., 2015a, Makina et al., 2015b, Edea 
et al., 2014, Randhawa et al., 2016), which were derived from western commercial cattle breeds. As well 
demonstrated in our previous studies, taurine origin chips were less informative in African zebu cattle 
and led to bias estimation of populations parameters compared to the indicine derived SNPs (Edea et al., 
2013, Edea et al., 2015a, Edea et al., 2015c). In this study, we used a high density and informative SNPs 
(80K) specifically developed from Bos indicus breeds to identify divergent selection between Ethiopian 
and Hanwoo cattle. 

Materials and Methods 

Cattle breeds, SNP genotyping and Quality Control   
We sampled 8 Ethiopian cattle populations (n = 245), and taurine reference breed Hanwoo (n = 22). The 

Ethiopian cattle samples represented 4 traditional breed groups: sanga (Raya-Azebo), zenga (Fogera and 
Arado), zebu (Begait, Borana, Arsi, Guraghe, and Ogaden). Unelated animals were sampled from multiple 
herds and villages. Nasal samples were collected using Performagene LIVESTOCK's nasal swab DNA 
collection kit (DNA Genotek Inc., Kanata, ON, Canada). The Hanwoo (Korean cattle) samples were 
collected from commercial Hanwoo production farms. 

All animals were genotyped using the 80K Indicine BeadChip (GeneSeek Genomic profiler; GeneSeek, 
Lincoln, NE, USA) derived mainly from Bos indicus breeds, which comprises 73,794 SNPs. Of 73,794 
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SNPs, we discarded 3,918 SNPs on the X chromosome, 74 on the Y–chromosome, 13 from mtDNA and 32 
unmapped to any chromosome, leaving 69,758 autosomal SNPs mapped to the bovine genome. Autosomal 
markers were screened for the call rate <90% and minor allele frequency (MAF) <0.05. Additionally, in 
each population, individuals with a call rate < 90% were discarded. Finally, a total of 67,810 autosomal 
SNPs for 267 animals retained for the analysis. Quality control measures were performed using SNP and 
Variation Suite v8.5.0 (Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com). 

Detection of selection signals and functional analyses
The FST statistics for selection mapping has been widely applied in several studies, including in dog 

(Akey et al., 2010) and cattle (Ramey et al., 2013, Makina et al., 2015b, Bahbahani et al., 2015a). In order 
to search for genomic regions that have been under divergent selection in beef (Hanwoo) and Ethiopian 
cattle populations, genetic differentiation (FST) was calculated with unbiased estimator proposed by Weir 
& Cockerham (1984) using SNP and Variation Suite v8.5.0 (Golden Helix, Inc., Bozeman, MT, www.
goldenhelix.com). To minimize the specious noise from single SNP based analyses, FST values were 
calculated with a sliding window of 10 SNPs as used in the previous study (Bahbahani et al., 2015b). As 
in (Porto-Neto et al., 2013), the most highly differentiated regions representing the top 1% windows of 
smoothed FST were treated as candidate selection regions. Genes within the specified selection regions 
were considered as candidate genes.

To annotate SNPs with respect to their functional classification of genes, we downloaded bovine gene 
annotation datasets (gene annotations and FASTA sequences) from the UCSC Genome Browser (http://
genome.ucsc.edu/.). The SNPs were annotated using the ANNOVAR tool (Wang et al., 2010). Enriched 
pathways analyses were performed using the web-based DAVID Bioinformatics resources (v. 6.8, https://
david.ncifcrf.gov/). Fisher’s exact test (EASE score) less than 0.05 was used to examine the significant 
term as recommended by the software. 

Results and Discussion
The average genomic FST values averaged in sliding windows of 10 SNPs (FST –10SNPW) was 0.20 between 

the Ethiopian cattle and Hanwoo. There are 334 genes within the top 1% windows (135 windows, Tables 
S1). Some of the regions on BTA7 (52.26–53.09 Mb), BTA12 (35.54–35.94 Mb), BTA13 (57.82–58.13 Mb), and 
BTA19 (27.32–27.81; 42.78–43.46 Mb) (Table S1) coincide with genomic regions under positive selection in 
East African shorthorn zebu cattle(Bahbahani et al., 2015a). Within these regions, three candidate genes 
(EFHA1, ALOX12/ ALOX15, and SLC16A11) concur with the present findings. ALOX15 or ALOX12 is near 
to QTL for scurs in cattle (Asai et al., 2004). Additionally, the candidate regions on BTA2 (64.62-64.93; 
125.29-125.56 Mb), BTA7 (45.73-46.04; 50.62-50.98; 51.61-52.80 Mb), and BTA22 (36.62-37.03Mb) overlap 
with selection signals identified in West- African cattle breeds (Gautier et al., 2009). 

Ethiopian cattle are evolved to adapt to a wide range of stresses (extreme temperature, UV, diseases 
prevalence, feed scarcity) and natural selection may have left genomic footprints in the underlying genes 
involved in local adaptation. Interestingly, we detected DNAJB5 (Hsp40) gene on BTA8:59.58-59.99 which 
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is known to be associated with thermo-tolerance (Table 1). Increased expression of Hsp40 is observed in 
goat during hyperthermic condition (Archana et al., 2017). Further evidence suggests that Hsp40 interact 
with Hsp70 (Liberek & Georgopoulos, 1993, Schröder et al., 1993). Increased expression of the Hsp40 
genes was observed in Drosophila melanogaster subjected to heat-shock (Carmel et al., 2011). In addition 
to their well-known function of HSPs as molecular chaperones, recent evidence shows that the two heat 
shock proteins (HSP70 and HSP40) also involved in antiviral immune responses (Dong et al., 2006). A QTL 
for body temperature has mapped on TA18 (Howard et al., 2014). The candidate gene LOC100299171 
overlapped with this region. 

The adverse influence of heat stress on reproduction is less pronounced in Bos indicus than in Bos 
taurus (Paula-Lopes et al., 2013). These differences could be genetic and some of the top 1% windows 
harbor genes which are involved in embryonic development, or fertility, including ID3, INHBC, UBE2D3, 
PSPC1, STAT5A, and PAIP2 (Table 1). INHBC is implied as the candidate gene for inhibin (IN) regulation, 
which is associated with testicular size and fertility in cattle (Fortes et al., 2013, Porto-Neto et al., 2014b). 
The gene ID3 plays a vital role in the regulation of pre-implantation embryo development (Li et al., 
2012a). Gene expression studies in high and low fertility heifers have revealed that UBE2D3 is linked to 
fertility (Killeen et al., 2014). PAIP2 was detected as under selection and associated with the reproductive 
traits in goats (Guan et al., 2016). PSPC1 is abundantly expressed in the mouse testis and implicated in 
regulating nuclear events during spermatogenesis (Myojin et al., 2004). STAT5A contains QTL for early 
embryonic survival (Khatib et al., 2008), associated with fertilization rate (Khatib et al., 2009), and sire 
conception rate (Li et al., 2012b).

Ethiopian cattle populations are better survived and produce under high diseases and parasites loads. 
Four of the candidate genes (AHCYL1, FAM13A, HERC3, PCID2, and CRYL1) (Table 1) are related to the 
mastitis and somatic cell count in dairy breeds. In their study (Bonnefont et al., 2011) demonstrated that 

Table 1. Candidate genes identified in the comparison of Ethiopian cattle with Hanwoo 
BTA Position Gene Trait/Gene function
2 129.60-130.15 ID3 Pre-implantation embryo development (Li et al., 2012a).
3 33.45−33.68 AHCYL1, ALX3 Mastitis and pigmentation (Bonnefont et al., 2011)
5 56.23−56.34 INHB, DCTN2 Testicular size and fertility (Fortes et al., 2013, Porto-Neto et al., 

2014b) and pigmentation (Gutiérrez-Gil et al., 2007).
5 56.70−56.79 MYO1A Pigmentation (Gutiérrez-Gil et al., 2007)
6 37.44−37.70 FAM13A, HERC3 Somatic cell counts (Kowalewska-Luczak & Kulig, 2013); yearling 

weight and carcass quality traits (Porto-Neto et al., 2014b) 
7 44.58−44.94 THEG Spermatogenesis (Yanaka et al., 2000)
7 50.62-50.98 MYOT Carcass quality(Adoligbe et al., 2016)
7 51.61−53.09 UBE2D3, PAIP2, TFEC Fertility (Labrecque et al., 2013), carcass quality (Mokry et al., 2013)
8 59.58−59.99 DNAJB5 (Hsp40) Thermo- tolerance, fertility (Carmel et al., 2011)
12 36.37−36.88  PSPC1 Male fertility/Spermatogenesis (Pan et al., 2005).
12 36.37-37.08 PARPA role in regulating adipogenesis [32].
12 36.37-36.66 GJA3 Body size and development (Kim et al., 2016)
12 35.97−36.29 CRYL1 Somatic cell count (Bonnefont et al., 2011)
12 90.55−90.80 PCID2 Somatic cell count (Bonnefont et al., 2011)
13 49.23−49.58 BMP2 Body size and development (Kim et al., 2016)
19 27.32−28.04 POLR2A Stature (Randhawa et al., 2015)
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AHCYL1, PCID2, and CRYL1 genes were differentially expressed between mastitis resistant and susceptible 
lines of dairy sheep. Similarly, variation within in the FAM13A gene was reported to be related to 
increased levels of somatic cell counts in Jersey cattle (Kowalewska-Luczak & Kulig, 2013). 

Ethiopian cattle population show striking variation in terms of coat color, whereas Hanwoo cattle 
predominantly display brown coat color(Choi et al., 2012). Accordingly, we detected genes related to coat 
color phenotypes (ALX3, DCTN2, and MYO1A (Table 1)). It has been shown that Alx3-mediated repression 
of Mitf in rodents (Mallarino et al., 2016). MITF is a master regulator of melanocyte differentiation (Hou 
& Pavan, 2008) and known to influence white spotting patterns in cattle (Qanbari et al., 2014), swap 
buffalo (Yusnizar et al., 2015), horses (Hauswirth et al., 2012), and dogs (Rothschild et al., 2006). 
Additionally, the candidate region on BTA6 (37.44–37.70 Mb) overlaps with QTL for the degree of spotting 
in cattle (Reinsch et al., 1999). MYO1A and DCTN2 are reported to have an influence on pigmentation in 
Charolais × Holstein population (Gutiérrez-Gil et al., 2007). The regions on BTA5 (56.59-56.70 Mb) and 
BTA6 (29.72–30.03 Mb) contain QTLs for coat color and coat texture (Liu et al., 2009, Mészáros et al., 2015, 
Huson et al., 2014). Given the importance of coat color and texture in thermoregulation (Gebremedhin & 
Wu, 2001); these genes are potential candidates for zebu adaptation to hot tropical areas. 

Our gene functional enrichment analysis revealed important pathways that may be involve in African 
cattle adaptation under tropical hot environments, including “vasopressin-regulated water reabsorption” 
(P = 0.001), “Rap1 signaling” (P = 0.011), “PI3K-Akt signaling” (P = 0.035), and “melanogenesis” (P = 0.007, 
Table 2). Water reabsorption is one of the physiological mechanisms for animal adaptation under dry 
habitats (CAIN III et al., 2006). A recent study involving Chinese sheep breeds evolved under arid 
environments detected highly enriched biological pathways for water reabsorption (Yang et al., 2016). In 
cattle, heat stress increased reactive oxygen species (ROS) formation at 40 °C (Singh et al., 2014).  
Generation of ROS is a response to stress conditions (Pastori & Foyer, 2002). The Rap1 signal was involved 
in the suppression of Ras-generated reactive oxygen species and protection against oxidative stress 
(Remans et al., 2004). The PI3K signaling pathway plays an important role in Hsp90 chaperone function 

Table 2. Results of enriched functional pathyas of the candidate genes 
Term Count Fisher Exact
Pathways in cancer 17 0.00045
Ubiquitin mediated proteolysis 8 0.0023
Hepatitis B 8 0.0038
Vasopressin-regulated water reabsorption 5 0.0011
Rap1 signaling pathway 9 0.011
Melanogenesis 6 0.0069
Chagas disease (American trypanosomiasis) 6 0.013
Amoebiasis 6 0.012
Endocytosis 9 0.034
Signaling pathways regulating pluripotency of stem cells 6 0.032
PI3K-Akt signaling pathway 11 0.035
Estrogen signaling pathway 5 0.026
Hedgehog signaling pathway 3 0.0086
Adrenergic signaling in cardiomyocytes 6 0.037
Platelet activation 6 0.022
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through regulating the expression of heat shock protein (Hsp70) (Chatterjee et al., 2013, Tu et al., 2000). 
Thus, these pathways are likely relevant for Ethiopian cattle adaptation under stressful environments.

Compared with Ethiopian cattle populations which are characterized by a short stature, and low 
productivity, Hanwoo cattle have undergone selection for yearling weight and beef quality traits, including 
carcass weight, eye muscle area, and backfat thickness (Lee et al., 2012, Flori et al., 2009). Intriguingly, 
we detected some candidate genes (TFEC, HERC3, POLR2A, BMP2, GJA3, PARP4, and MYOT) (Table 1) 
within the top 1% windows related to stature, body size, and beef quality traits. TFEC and HERC3 are 
associated with a backfat thickness and yearling weight in beef cattle, respectively (Mokry et al., 2013, 
Porto-Neto et al., 2014a). Polymerase (RNA) II (DNA directed) polypeptide A (POLR2A) contains functional 
variants contributing to the genetic control of bovine stature (Randhawa et al., 2015). BMP2 and GJA3 are 
well-known genes for body size and development (Fan et al., 2011) and undergone selection in sheep and 
goat breeds adapted to hot arid environments (Kim et al., 2016). More importantly, the GJA3 gene is 
identified as under recent selection in brown Hanwoo cattle (Lim et al., 2016). Genetic variation within 
the PARP4 has found to be associated with carcass weight in commercial Hanwoo cattle (Edea et al., 
2018) and regulates adipogenesis. MYOT is involved in myofibril assembly and actin binding in the 
muscle tissue (Schessl et al., 2014). Recent functional analysis revealed the association of mutations 
within MYOT with loin muscle area, backfat thickness and intramuscular fat in cattle (Adoligbe et al., 
2016).

In conclusion, by comparing cattle breeds with distinct evolutionary and breeding legacies, we 

Fig. 1. Manhattan plots of genome-wide smoothed FST values. The dotted gray line indicates the top 1% FST values 
of the genome-wide empirical distribution.
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identified candidate genes under directional selection and pathways which may contribute to further 
understanding of the consequence of natural and/or artificial selection in shaping the diversity of modern 
cattle breeds. 
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